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Abstract

A neural-network-based method is offered to determine the flutter derivatives of section models under
smooth and turbulent flows. The approach uses the observed dynamic responses to train an appropriate
neural network. Subsequently, the modal parameters of the model for different mean velocities of wind flow
are directly estimated using weight matrices in the neural network. The flutter derivatives can then be
determined accurately. The validity of the present method is verified through numerical studies. Finally, the
procedure is employed to process experimental data from an inverted-U-type section model, obtained from
wind tunnel tests.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Flutter derivatives are aeroelastic parameters and are crucial to the aeroelastic stability analysis
of cable-supported bridges. Accordingly, the determination of the flutter derivatives has
stimulated the interest of many researchers. Based on experimental results, Scanlan and Tomko
[1] first proposed eight flutter derivatives to represent the self-excited forces caused by wind. The
authors also utilized the logarithmic decrement parameter for damping to determine some flutter
derivatives by considering free oscillation data measured by three different experiments. However,
Kumarasena [2] stated that the procedure of Scanlan and Tomko [1] cannot determine easily all
the flutter derivatives. Advanced system identification techniques have also been used to establish
the flutter derivatives from the results of typical wind tunnel tests that involved torsional and
vertical responses under various flow conditions (for example, smooth and turbulent flow).
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Shinozuku et al. [3] used the auto-regressive and moving-average (ARMA) model, cooperating
with the instrumental variable (IV) method and limited information maximum likelihood (LIML)
method, to determine the flutter derivatives of a 2-D suspension bridge model, from the dynamic
responses caused by the self-excited and buffeting forces. Imai et al. [4] reviewed and compared
some system identification methods for processing structural dynamic responses: he considered
the ordinary least-squares (OLS) method, IV method, maximum likelihood (ML) method and
extended Kalman filter. These researchers concluded that the IV and ML methods performed
better than OLS method in estimating the structural parameters for a 2-D suspension bridge
model. Sakar et al. [5,6] developed the modified ITD (MITD) by introducing instrumental
variables into ITD. Theoretically, the MITD method can only process free vibration signals;
therefore, this method is not expected to handle effectively the dynamic responses to buffeting
forces unless the buffeting forces are a broadband spectrum. Poulsen et al. [7] used the stochastic
realization identification method to estimate the eight flutter derivatives from dynamic responses
that included vertical and torsional modes, while Yamada et al. [8] and Iwamoto and Fujino [9]
used the extended Kalman filter, combined with the autoregressive (AR) model. Bogunovic
Jakobsen and Hjorth-Hansen [10] proposed the covariance block Hankel matrix method to
estimate flutter derivatives from buffeting response data.
Over the previous two decades, artificial neural networks (ANN) have gradually become known

as powerful tools in pattern recognition, signal processing, control, and complex mapping,
because of their excellent capacity for learning and high tolerance to partially inaccurate data [11].
This paper aims to show how flutter derivatives can be estimated using ANN to process the
dynamic responses of a bridge deck coming from both the self-excited and the buffeting forces.
Conventional back-propagation is employed to train ANN by using the aeroelastic responses of a
section model. A procedure is developed to estimate directly the dynamic characteristics of the
section model based on the weighting matrices of the trained ANN. The flutter derivatives are
then determined from the identified dynamic characteristics. Numerically simulated aeroelastic
responses of a bridge deck to the self-excited and buffeting forces are examined to confirm the
validity of the proposed procedure. Finally, the procedure is applied to process the responses
measured in typical wind tunnel tests.

2. Governing equations for an aerodynamic system

For an idealized 2-D aerodynamically coupled section model, as shown in Fig. 1, the equations
of motion under turbulent flow can be written as
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where h is the vertical displacement, a is the torsional angle, %m is the mass, %I is the mass moment of
inertia, and cij and kij are the mechanical damping and stiffness coefficients between degrees of
freedom, i and j; respectively. Lse and Mse are, respectively, the self-excited forces corresponding
to h and a; induced by the mean wind velocity, while Lb and Mb are the buffeting forces associated
with h and a; due to turbulent wind.

C.H. Chen / Journal of Sound and Vibration 263 (2003) 797–813798



In a smooth wind flow, with mean velocity U ; Lse and Mse are idealized as [12]
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where r is the air density, B is the deck width, and H�
i and A�

i are non-dimensional flutter
derivatives. The flutter derivatives are functions of the reduced frequency, K (¼ Bos=U ; where os

is the frequency of the system). The buffeting forces corresponding to h and a are given as [13]
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where CL; CD; and CM are the static lift, and drag and moment coefficients, respectively, and are
functions of the wind’s angle of attack, a, uðtÞ and wðtÞ are the along-wind and vertical velocity
fluctuations of the wind, respectively.
Substituting Eqs. (2) and (3) into Eq. (1), and rearranging, yields
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Fig. 1. A typical layout of a 2-D section model in wind tunnel test.
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c
eff
ij and k

eff
ij are called the effective damping and stiffness coefficients between degrees of freedom,

i and j, at a mean wind velocity U ; respectively, and are given as
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Notably, Ceff and Keff are commonly not symmetric. Moreover, Ceff is no longer a proportional
damping matrix.

3. Backpropagation identification network

An artificial neural network model is a system with inputs and outputs that is based on
biological nerves. The system can consist of many computational elements that operate in parallel
and are arranged in patterns that resemble biological neural nets. A neural network is usually
characterized by its computational elements, its network topology, and the learning algorithm
employed. Among the several types of ANN, the feedforward, multilayered, supervised neural
network with the error backpropagation algorithm—the backpropagation network (BPN) [14] is
by far the most popular neural network learning model, because of its simplicity.
The architecture of BP networks, shown in Fig. 2, includes an input layer, one or more hidden

layers and an output layer. Every node in each layer is connected to every node in the adjacent
layer. Notably, Hecht-Nielsen [15] demonstrated that one hidden layer of neurons suffices to
model any solution surface of practical interest. Hence, this study addresses a network with only
one hidden layer. Before an ANN can be used, it must be trained using an existing training set of
pairs of input–output elements.
The training of a supervised neural network using a BP learning algorithm typically proceeds in

three stages. The first stage is the data feedforward. The computed output of the ith node in the
output layer is defined as follows:
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where wij is the connective weight between nodes in the hidden layer and those in the output layer,
vjk is the connective weight between nodes in the input layer and those in the hidden layer, ywi (or
ynj) are bias terms that represent the threshold of the transfer function g; and xk is the input of the
kth node in the input layer. Terms Ni; Nh; and No are the numbers of nodes in the input, hidden,
and output layers, respectively. The transfer function can be linear or non-linear. This work used
a linear transfer function, defined as

gðqÞ ¼ q: ð9Þ

The second stage is error backpropagation through the network. During training, a system
error function monitors the performance of the network. This function is commonly defined
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as follows:
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Þ; *yi is the desired (or measured) value of output
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be determined in a ANN.
The final stage is the adjustment of the weights. For computational efficiency, the Marquardt–

Levenberg algorithm [16] is applied to obtain wij ; vjk; ywi and yvj by minimizing EðsÞ in Eq. (10).

4. Identification of flutter derivatives

Obtaining the responses, hðtÞ and aðtÞ; and the inputs, uðtÞ and wðtÞ; in Eq. (6) from a numerical
simulation or, experimentally, from wind tunnel tests with smooth flow, enables a neural network
to be constructed, as depicted in Fig. 3, to predict hðtÞ and aðtÞ from previous responses, hðt � iÞ
and aðt � iÞ; and inputs uðt � jÞ and wðt � jÞ; where i=1, 2, 3,y, n, j=0, 1, 2,y,m. Variables n

and m represent the lags in the output and input, respectively. Eqs. (8) and (9) can be combined to
show easily that the neural network in Fig. 3 can be mathematically described as
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Fig. 2. A typical three-layer neural network.
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where fYg ¼ ðhðtÞ; aðtÞÞT; fXg ¼ ð %XFÞT;
%X ¼ ðhðt � 1Þ aðt � 1Þ hðt � 2Þ aðt � 2Þ?hðt � nÞ aðt � nÞÞ;

F ¼ ðuðtÞ wðtÞ uðt � 1Þ wðt � 1Þ?uðt � mÞ wðt � mÞÞ:
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 are wij and vij ; respectively, and the elements of fywg and fyvg
are ywi and yvi: Carefully expanding Eq. (11) yields
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The expression of Eq. (12) is similar to the time-series model, ARX. The ARX model equates
the equations of motion as given in Eq. (6). Therefore, the dynamic characteristics of the system,
described by Eq. (6), can be obtained from the coefficient matrices of AR [17].
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Fig. 3. Three-layer neural network.
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The modal parameters can be determined from the eigenvalues and eigenvectors of ½G
 by
following the procedure of Huang [17], and constructing the following matrix:
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Let lk and fckg denote the kth eigenvalue and eigenvector of ½G
; respectively. The eigenvalue, lk;
is generally a complex number, and can thus be written as ak þ ibk: The complex conjugates of lk

and fckg are also an eigenvalue and eigenvector, respectively. The natural frequency and modal
damping of the system, as in Eq. (12) are determined by
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where *bk is the pseudo-undamped circular natural frequency, xk is the modal damping ratio:
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and 1=Dt is the sampling rate of measurement.
The special composition of ½G
 in Eq. (13) is such that its eigenvectors exhibit the following

property:
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where ck
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1
is the modal shape of the system that corresponds to the natural frequency, *bk:

Notably, the number, n; in constructing an ANN is commonly larger than the number of
degrees of freedom for the structural system under consideration, to fit appropriately to the
measured data. Therefore, the number of eigenvalues of [G] in Eq. (13) is often larger than the
number of the natural frequencies for the structural system. It means that, as well as real
mechanical modes, extra spurious modes are generated from the constructed ANN. Nevertheless,
the eigenvalues and eigenvectors that correspond to real mechanical modes occur consistently as n
increases.
lk and ck

� �
1
corresponding to real mechanical modes can be easily identified from the

observed dynamic responses since Eq. (6) represents a structural system with only two degrees of
freedom. Therefore, knowing %m and %I; enables c
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ij and k
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where #lk ¼ logeðlkÞ=Dt: From the above equation,

Ceff M

M 0

" #�1
Keff 0

0 �M

" #
¼ UKU�1; ð20Þ

where the columns of U are ffkg and its conjugate, and K is a diagonal matrix with #lk and its
conjugate in the diagonal. Expanding Eq. (20) yields

0 I

�M�1Keff �M�1Ceff

" #
¼ UKU�1: ð21Þ

From the above equation, Ceff and Keff can be determined if M is known.

5. Numerical simulation

Numerical simulations were performed for a section model with two degrees of freedom under
flutter force and buffeting force conditions to demonstrate the validity of the proposed identifying
procedure. A typical wind tunnel test is usually performed on the section model under smooth
flow, while the turbulent flow always affects the measurement for a long cable or suspension
bridge.
The scaled stream section model, depicted in Fig. 4 for the Kao Pin Hsi cable-stayed bridge in

southern Taiwan, was used in this numerical simulation. This section model is referred to as,
‘‘type A’’. Table 1 lists its material and section properties. The model is assumed to be a
mechanically decoupled system with two degrees of freedom, such that the mechanical damping
and stiffness matrices in Eq. (1) can be determined from the data given in Table 1. The flutter
derivatives of the physical section model, shown in Fig. 5 and denoted as ‘‘experimental’’, were
applied to simulate numerically the responses of the system to various wind flow conditions. These
flutter derivatives were obtained from wind tunnel tests and are reported in Ref. [19]. Notably, fv

and ft represent the natural vertical and torsional frequencies of the section model, respectively.

5.1. Flutter force case

The flutter derivatives were determined from the experimental curve shown in Fig. 5 to compute
the dynamic responses of the model under smooth flow with a given wind velocity. The effective
damping and stiffness matrices corresponding to the given wind velocity were obtained using

431.3mm

272.5mm

38.3mm

Fig. 4. Cross-section of Kao Ping Hsi bridge model (type A).
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Eq. (7). Then, the dynamic responses were obtained by solving Eq. (6) by direct integration, with
no input forces but with a unit initial displacement for each degree of freedom [20]. Figs. 6(a) and
(b) show typical vertical and torsional response histories, respectively. The dynamic displacement
responses with a duration of 40 s were stored for further analysis. The sampling rate of the data
was 50Hz.
To be consistent with the study cases in the next section, responses from t ¼ 0 to 20 s were used

to train an ANN. For each wind velocity, an ANN was established. The architecture of the ANN
is similar to that shown in Fig. 3 with n ¼ 8; and eight nodes in the hidden layer. The effective
damping and stiffness matrices in Eq. (6) were estimated using Eq. (21), by constructing [G] in
Eq. (13) from the weighting matrices in the ANN, and determining the corresponding eigenvalues
and eigenvectors. The flutter derivatives were then determined using Eq. (7). Fig. 5 also presents
the obtained flutter derivatives that correspond to various wind flow velocities. These derivatives
agree closely with the experimental values. This agreement confirms the feasibility of the proposed
procedure in processing dynamic responses under smooth flow, to determine the flutter
derivatives.
In addition, the MITD method has been employed to identify the flutter derivatives

corresponding to various wind velocities. The results are also depicted in Fig. 5, which shows
that these flutter derivatives obtained from the MITD method agree very well with the present
values.

5.2. Buffeting force case

The buffeting forces due to wind turbulence can be written as quasi-steady expressions, given in
Eqs. (4) and (5). The along-wind and vertical components of wind gusts, uðtÞ and wðtÞ; are often
assumed to be stationary random processes and prescribed by their auto-spectral density
functions. The auto-spectral density functions suggested by Simiu and Scanlan [21] were used in
this simulation:

oSuuðoÞ
u2�

¼
200f

ð1þ 50f Þ5=3
; ð22aÞ

Table 1

Model parameters of Kao Ping Hsi bridge (type A)

Item Unit Scale

Deck width m 0.431

Mass kg/m 4.66

Mass moment of inertia kgm2/m 0.157

Vertical frequency Hz 2.441

Torsional frequency Hz 5.591

Vertical damping ratio % 0.206

Torsional damping ratio % 0.159
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Fig. 5. Comparison of identified flutter derivatives with experiment one for the Kao Ping Hsi bridge section model: (a)
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oSwwðoÞ
u2�

¼
3:36f

ð1þ 10f 5=3Þ
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where Suu and Sww are the auto-spectral density functions of u and w; respectively, f ¼ oz=UðzÞ; z
is the height of the deck above ground and is set to 50m, o is the frequency of the wind, and u� is
the friction velocity which depends on the surface’s roughness. The surface roughness is set to
0.3m such that u� can be determined from the formulation given in Ref. [21].
Time histories for u and w must be generated to compute the dynamic responses of the section

model in the time domain. Accordingly, the procedure of Cao et al. [22] was adopted here. The
stochastic wind field was simulated from the corresponding auto-spectral density function by

gjðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðDoÞ

p Xj

k¼1

XN

l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
SklðoÞ

p
GjkðoÞ cosðoklt þ fklÞ; j ¼ 1; 2; ð23Þ

where g1ðtÞ ¼ uðtÞ; g2ðtÞ ¼ wðtÞ; N is the number of data points, Do is the increment in frequency,
fkl are the sequences of independent random phase angles, and SðoklÞ is the cross-spectral density
matrix, which can be expressed as

SjkðoÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SjjðoÞSkkðoÞ

p
CohðDjk;oÞ; j; k ¼ 1; 2 and jak; ð24Þ

where CohðDjk;oÞ is the coherence function between j and k; given in Ref. [22]. GjkðoÞ is the
coefficient matrix, which is concerned with the complex frequency response and auto-spectral
density functions [22]. CL; CD; CM ; @CL=@a; and @CM=@a are set equal to �0.39, 0.95, 0.017,
6.1302 rad�1, 1.9551 rad�1, respectively, in determining the buffeting forces. Then, the dynamic
responses under turbulent flows of the system with two degrees of freedom can be found using the
direct integration scheme used in the previous section. Fig. 7 shows a set of typical, simulated
dynamic responses. The displacement response histories were generated with a duration of 40 s.
Again, the sampling rate was 50Hz.
Simulated dynamic displacement responses for the early 20 s, which show the decaying

characteristics, are used to train an ANN with the architecture depicted in Fig. 3 for m ¼ n ¼ 8
and a hidden layer of 16 nodes. The identified results corresponding to various mean velocities are
also shown in Fig. 8 and are denoted as ‘‘B-0%’’. These results are also excellently consistent with
the experimental results.
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Fig. 6. A set of simulated data under flutter forces: (a) vertical response; (b) torsional response.
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In reality, measured responses always contain some corrupted noise. Noise with 10% variance
in the signal-to-noise ratio was randomly added to the simulated responses, to somewhat simulate
this situation. These responses were then used to train an ANN with m ¼ n ¼ 12 and a hidden
layer of 16 nodes. The values of m and n in the input layer must increase to yield accurate results,
because of the introduction of the noise. The identified flutter derivatives are also given in Fig. 8
and are denoted as ‘‘B-10%’’. Notably, in training an ANN only the simulated responses for the
early 20 s were used to somewhat eliminate the effects of noises on identifying the flutter
derivatives. Although the identified results are not as good as those obtained for the case without
noise, the identified and experimental results remain highly consistent, ensuring the validity of the
proposed method in processing noisy data.

6. Wind tunnel experiment

This work uses measured responses of a sectional model in wind tunnel tests to determine the
flutter derivatives of the model under smooth flow. An inverted-U deck section, as illustrated in
Fig. 9, was used in wind tunnel tests with smooth flow. The section model is denoted as a ‘‘type-
B’’ model in the following, and is similar to an unstable bluff box deck model. The motion of the
section model can be described simply with two degrees of freedom—namely, vertical and
torsional.
The experiments were performed at the atmospheric boundary layer wind tunnel laboratory of

Tamkang University in Taiwan. The atmospheric boundary layer wind tunnel is an open-circuit,
low-speed wind tunnel. The total length of the wind tunnel is 29.5m; the test section is 18.7m
long, 3.2m wide and 2.0m high. A turntable (3.0m in diameter) in the test section can be rotated
easily to alter the direction of the wind’s flowing to the model. A 175 hp, constant-speed motor
driving a 2.1m diameter, variable-pitch fan gives a maximum wind speed of 18m/s. The 4:1
contraction section contains honeycombs and four screens to produce low-turbulence flow at the
entrance of the test section. Installing both generators of suitable vorticity and surface roughness
elements in the test section enables the mean flow and turbulence structure of strong winds to be
simulated correctly, at model scales between 1/100 and 1/1000.
Table 2 summarizes the geometrical and material properties of the section model [23]. Fig. 10

plots a set of typical displacement response histories for vertical and torsional motions. The
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Fig. 7. A set of simulated data under buffeting forces: (a) vertical response; (b) torsional response.
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responses were recorded over 10 s, at a sampling rate of 250Hz. The present identification
procedure was applied to experimental data that corresponded to various mean wind velocities
without preprocessing.
Fig. 11 presents the variation of the identified flutter derivatives with the inverse of the

dimensionless reduced frequency, 2p=K : The magnitudes of A3�; H1�; and H4� increase with
2p=K ; while the other flutter derivatives do not show such a monotonic trend. The fluctuations of
these identified flutter derivatives with 2p=K are similar to those for the unstable bluff box deck
model, obtained by Scanlan [13]. Notably, the findings of Scanlan [13] and the trend in Fig. 11(d),
suggest that the positive value of A2� should increase with 2p=K :

12mm 

30mm 270mm 30mm 

60mm 

Fig. 9. Cross-section of type B model.

Table 2

Model parameters of section model type B

Item Unit Scale

Deck width m 0.345

Mass kg/m 2.8707

Mass moment of inertia kgm2/m 25.27� 10�3

Vertical frequency Hz 2.71

Torsional frequency Hz 6.04

Vertical damping ratio % 0.779

Torsional damping ratio % 0.129

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 1 2 3
Time (s)

A
m

pl
itu

de
 (

m
)

U=6.11m/s

4 5
-0.4

-0.2

0

0.2

0.4

A
m

pl
itu

de
 (

ra
d)

U=6.11m/s

0 1 2 3
Time (s)

4 5
(a) (b)

Fig. 10. A typical set of experiment data under smooth flow: (a) vertical response; (b) torsional response.
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Cable-supported bridges are usually designed to have the natural frequency of the first
torsional mode higher than that of the first vertical mode. The flutter derivatives, H4� and A3�
are well known greatly to influence the vibration frequencies of vertical and torsional
modes, respectively. Eq. (7) reveals that the negative value of H4� and positive value of A3�;
given in Fig. 11, would result in an increase in the vibration frequency of the vertical mode
and a decrease in the vibration frequency of the torsional mode, as wind velocity increases.
Therefore, these two vibration frequencies are expected to be the same at a certain wind
velocity due to the degeneracy of eigenvalues, and the so-called stiffness-driven flutter instability
occurs [24].
The flutter derivatives, H1� and A2� were reported to influence significantly the modal damping

of vertical and torsional modes, respectively [21]. A negative value of H1�; whose magnitude
increases with wind velocity, results in increased net damping of vertical motion. The negative
values of A2� given in Fig. 11, also result in an increase in the net damping of the torsional mode.
However, as mentioned above, positive values of A2� are expected to increase for a wind velocity
that rises far above the range considered in the figure, such that the net damping becomes negative
at a certain, high velocity. Then, the so-called damping-driven flutter instability occurs [24].
Comparing the values of A2� for the type B model (Fig. 11(d)) with those for the type A model
(Fig. 5(f)) reveals that the former model more easily suffers damping-driven flutter instability than
the latter.
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7. Concluding remarks

This study has explored a novel procedure, based on using artificial neural networks, to
determine the flutter derivatives of a section model from its dynamic responses under smooth or
turbulent flow. The method is based on establishing a high-fidelity neural network to match the
observed responses. The modal parameters of the section model for various mean velocities of
wind flow are directly estimated from the weighting matrices in the neural network. Then, the
flutter derivatives, which depend on mean flow velocity, are obtained through matrix operations
on the modal parameters.
Numerical simulations of a section model under smooth and turbulent flows have been

performed to confirm the validity of the proposed procedure. The present procedure has been
shown to be able to accurately determine the variation of the flutter derivatives with the mean
velocity of the wind, even for dynamic responses with corrupting noise.
The present procedure has been applied to real data obtained from wind tunnel tests on an

inverted-U-type section model to demonstrate its practicability. The trends in the variations of
identified flutter derivatives with 2p=K are similar to those for the unstable bluff box deck model,
obtained by Scanlan [13], due to the similarity of the two section models. The identified flutter
derivatives indicate that the stiffness-driven flutter instability and the damping-driven flutter
instability can easily occur in this section model.
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